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Improved Monte Carlo Renormalization 
Group Method 

Rajah Gupta, 1 K. G. Wilson, 2 and C. Umrigar 2 

An extensive program to analyze critical systems using an improved Monte 
Carlo renormalization group method (IMCRG), tI/being undertaken at LANL 
and Cornell, is described. Here we first briefly rview the method and then list 
some of the topics being investigated. 
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1. INTRODUCTION TO MCRG 

Renormalization group ( R G )  (2) is a general framework for studying 
systems near their critical point where all length scales are important. The 
scaling properties associated with second-order phase transitions and the 
universal critical exponents have been calculated for many systems either 
analytically or by the Monte-Carlo renormalization group (MCRG) 
method.(2 5) The idea is as follows: Consider a magnetic system consisting 
of spins {s} on the sites of a d-dimensional lattice L described by a 
Hamiltonian H with all possible couplings {Ks }. All thermodynamic quan- 
tities can be found from a detailed knowledge of the partition function 

Z = t r e  H=t r  eke& (l) 

where S~ are the interactions. 
In the standard MCRG m e t h o d ,  (3-6) the spin configurations are 

generated with the Boltzmann factor e -H. The renormalized theory-- 
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interaction of block spins {s 1 } defined on the sites of a sublattice L ~ with 
lattice spacing b times that of L--is defined by 

e - H~('I) = tr P(s ~, s) e -m ' )  (2) 

where the projection operator P(s 1, s) (also called the renormalization 
group transformation (RGT)) should integrate out the short distance fluc- 
tuations but leave the long distance physics unchanged. It satisfies the con- 
straint 

tr 1 P(s ~, s) = 1 (3) 

independent of the state {s}. This guarantees that the two theories have the 
same partition function. 

Renormalization group is the study of the transformation H 1 = R(H)  
defined on the space of coupling constants {K~} of the model. At all fixed 
points H*, which have a divergent correlation length, the theory is scale- 
invariant. This is the source of the scaling functions observed in ther- 
modynamic systems. A certain neighborhood, the set of critical points in 
the coupling space, forms the domain of attraction of the fixed point. The 
long-distance physics of all theories attracted by a given fixed point is the 
same, and under a RGT a critical Hamiltonian flows to the fixed point 
with the rate of flow given by the irrelevant eigenvalues. The relevant eigen- 
value(s) give the rate of flow away from the fixed point (along the unstable 
direction) and are related to the critical exponent(s) v. In the standard 
MCRG method (6) these are calculated from the eigenvalues of the 
linearized transformation matrix ~ which is defined to be 

T ~ -  ~K~-' - O<S~> QK}-' (4) 

Each of the two terms on the right is a connected 2-point correlation 
function 

and 

a<sa> 
OK~_ 1 - < S~S~- 1> _ ( S~ > < S~ -1 > (5) 

a<s~> 
OK} - < S~S~> - <S~><S~> (6a) 

Here <S~> are the expectation values on the nth renormalized lattice and 
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K~ are the corresponding couplings. The exponent v is found from the 
leading eigenvalue 2 on T~a as 

In b 
v = (6b) 

In 2 

where b is the scale factor of the RGT. The accuracy of the calculated 
exponents improves if they are evaluated close to the fixed point. This can 
be achieved by starting from a critical point and blocking the lattice a suf- 
ficient number of times. The convergence is therefore limited by the starting 
lattice size and can be improved if H n is used in the update. Thus it is 
important to determine the renormalized couplings {K ~ }. The Achilles heel 
of this method is that as yet no way is known to determine the errors in the 
exponents obtained from a truncated set of matrices. 

2. I M P R O V E D  M C R G  

In the improved MCRG method (1) the configurations {s} are 
generated with the weight 

P( s 1, S) e ,q(s)+/~e(s~) (7) 

where H e is a guess for the H*. Using both site and block couplings 
eliminates the long-time correlations due to a divergent correlation length. 
If H g = H I, then the block spins are completely uncorrelated and 

<S'~> 0 , 1  = <S=Sp> =n= a=~ (8) 

where for the Ising model (and most other models) the integer n= is simply 
a count of the number of terms (multiplicity) of interaction type S=. When 
H g # H 1, then to first order 

< S i t >  1 1  1 = < S = S e > H g = H , ( K  --  Kg) e (9) 

and using (8), the renormalized couplings {K*=} are determined with no 
truncation errors as 

K~= = K g +  <S~>/n~ (10) 

Th~s procedure can be iterated using H n 1 as the spin H in (7) to find H n. 
If the irrelevant eigenvalues are small, then, after two or three repetitions of 
the RGT, the sequence H" converges to the fixed point the update. This 
second limitation can be avoided by the following modification that allows 
a direct calculation of the nth renormalized Hamiltonian H n. In (7) use H g 
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as the guess for H n. The update now involves the original spins and the nth 
level block spins in the Boltzmann weight 

P(s n, s " - l )  . ' '  P(s 1, s) e ~s)+z4g~s,) (11) 

Equations 8-10 are unchanged except that the level superscript is 
replaced by n, i.e. the nth level block-block correlation matrix is diagonal 
and given by (8). With this modification, the only limitation left is the size 
of the starting lattice. 

The calculation of the LTM proceeds exactly as in the standard 
MCRG, i.e., (4) to (6). However, in the limit H g = H  1, the block-block 
correlation matrix is diagonal and given by (8). Thus is has no truncation 
errors, can be inverted with impunity, and the final LTM elements are also 
free of all truncation errors. The only error is in finding the eigenvalues of a 
truncated matrix. A perturbation theory method to correct this error is 
described in Ref. 8. 

To summarize, we find that simulating the system with several 
couplings and with both the block and site spins does complicate the 
program, but there are three very important advantages to this method: 

1. Generating configurations according to (7) removes the long-time 
correlations, so there is a very large gain in statistics, i.e., thermal 
equilibrium is reached quickly and the correlation between successive 
sweeps is limited to a few (O(1)) passes. 

2. The hardest part of such methods, an accurate calculation of (S~S~)I 1 
for many long-range interactions, is known exactly. Also in the 
evaluation of the H 1 and LTM, a truncation in the coupling constant 
space does not affect the results because this matrix is diagonal. 

3. This method extends easily to lattice gauge theories and other spin 
models (see Ref. 9). 3 

3. CURRENT PROJECTS 

1. To find the fixed points for the d=  2 and d =  3 Ising models. 

2. To investigate the effect of tuning the RGT. The important question 
here is: Is the fixed point moved along the redundant directions only 
when the RGT is changed? If so, can the calculation of the critical 
exponents be improved by tuning the RGT? 

3. To obtain the parameters of the effective field theories obtained by 
applying IMCRG to Non-Abelian gauge theories. 

3 These two references give a detailed introduction to Monte Carlo methods in spin and gauge 

systems. 
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